Hotspots in Cancer.
Missense mutations are perhaps the most difficult mutation type to interpret in human cancers. Truncating loss-of-function mutations and structural rearrangements generate major changes in the protein product of a gene, but a single missense mutation yields only a small change in protein chemistry. The impact of missense mutation on protein function, cellular behavior, cancer etiology, and progression may be negligible or profound, for reasons that are not yet well understood. Missense mutations are frequent in most cancer types, accounting for approximately 85% of the somatic mutations observed in solid human tumors, and the cancer genomics community has prioritized the task of identifying important missense mutations discovered in sequencing studies. Whole exome sequencing (WES) studies of cancer have created new opportunities to better understand the importance of missense mutations. This enormous collection of data now allows detection of patterns with power that was unheard of a few years ago.
Comparison of hotspot detection in the TSG FBXW7 in 1D and 3D [1]. |
Good reads on the subject:
[1] Tokheim, Collin, et al. "Exome-scale discovery of hotspot mutation regions in human cancer using 3D protein structure." Cancer research (2016): canres-3190.
[2] Perdigão, Nelson, et al. "Unexpected features of the dark proteome." Proceedings of the National Academy of Sciences 112.52 (2015): 15898-15903.
[3] Kamburov, Atanas, et al. "Comprehensive assessment of cancer missense mutation clustering in protein structures." Proceedings of the National Academy of Sciences 112.40 (2015): E5486-E5495.
_________________________________________________________________________________
Collin Tokheim got his bachelor's degree in biomedical engineering at the University of Iowa. After a short stint working in an RNA genomics lab, he came to Hopkins to work on a Ph.D. in Biomedical Engineering. He currently works in Rachel Karchin's lab doing computational research applied to cancer genomics. Collin's current research focuses on how protein structures used on an exome-scale can inform which missense mutations are likely drivers of cancer.
No comments:
Post a Comment